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A multi-objective evolutionary approach to
the protein structure prediction problem

Vincenzo Cutello, Giuseppe Narzisi and Giuseppe Nicosia
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Department of Mathematics and Computer Science, University of Catania, V. le A. Doria 6,
95125 Catania, Italy

The protein structure prediction (PSP) problem is concerned with the prediction of the
folded, native, tertiary structure of a protein given its sequence of amino acids. It is a
challenging and computationally open problem, as proven by the numerous methodological
attempts and the research effort applied to it in the last few years. The potential energy
functions used in the literature to evaluate the conformation of a protein are based on the
calculations of two different interaction energies: local (bond atoms) and non-local (non-bond
atoms). In this paper, we show experimentally that those types of interactions are in conflict,
and do so by using the potential energy function Chemistry at HARvard Macromolecular
Mechanics. A multi-objective formulation of the PSP problem is introduced and its
applicability studied. We use a multi-objective evolutionary algorithm as a search procedure
for exploring the conformational space of the PSP problem.

Keywords: multi-objective optimization; Pareto front; protein folding;
protein structure prediction; multi-objective evolutionary algorithms

1. INTRODUCTION

Proteins are long sequences of 20 different amino acids.
Proteins are known to have many important functions
in the cell, such as enzymatic activity, storage and
transport of material, signal transduction, antibodies
and more (Whisstock & Lesk 2003). The amino acids
composition of a protein will usually uniquely deter-
mine its three-dimensional structure (Anfinsen 1973),
to which the protein’s functionality is directly related.

The protein structure prediction (PSP) problem is
currently one of the most challenging problems in
Biochemistry and Bioinformatics (Nicosia 2004). It is
simply defined as the task of understanding and
predicting how the information coded in the amino
acid sequence of proteins translates into the three-
dimensional structure of the biologically active protein.
If we were able to solve the PSP problem we would
greatly simplify, for example, the task of understanding
the mechanism of hereditary and infectious diseases, of
designing drugs with specific therapeutic properties and
of growing biological polymers with specific material
properties.

Protein folding (PF) has to be distinguished from
PSP. In the PSP, we are not interested in the folding
process (dynamic aspect), but only in the attained final
structure (static aspect). Common methods for finding
protein three-dimensional structures (such as X-ray
crystallographic and NMR—nuclear magnetic reson-
ance) are slow and costly, and may take up to several
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months of lab work. As a consequence, there has been a
continuously growing interest in the design of ad hoc
algorithms for the PSP problem. There are two main
types of computational strategies which are employed
today: knowledge-based and ab initio. The hypothesis
behind knowledge-based methods (homology model-
ling, Tramontano & Morea 2003; threading, Mirny
et al. 2000) is that similar sequences will fold in a similar
way. Ab initio strategies (Klepeis et al. 2005) are
required when no homology is available so that one is
forced to fold the proteins from scratch.

Successful structure prediction requires a free energy
function sufficiently close to the right potential for
the native state, as well as a method for exploring
conformational space. Current potential functions,
however, have limited accuracy and the conformational
space is vast. Several algorithmic approaches have been
applied to the PSP problem in the last 20 years (Nicosia
2004; Cozzetto et al. 2005): molecular dynamics,
Metropolis Monte Carlo, simulated annealing, simu-
lated tempering, evolutionary algorithms. In spite of all
these efforts, PSP remains a challenging computation-
ally open problem.

2. MULTI-OBJECTIVE OPTIMIZATION

Historically, PF and PSP, both central problems in
molecular biology, have been approached as a large
single-objective optimization problem: given the pri-
mary sequence find the three-dimensional native
conformation with minimum energy (PSP), and the
pathways to reach the native conformation (PF), using
a single-objective potential energy function. Molecular
dynamics, Monte Carlo methods and evolutionary

© 2005 The Royal Society
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algorithms (Bowie & Eisemberg 1994; Hansmann &
Okamoto 1997; Pendersen & Moult 1997; Simons et al.
1997; Cui et al. 1998; Nicosia 2004) are today’s state of
the art methodologies to tackle PF and PSP as a single-
objective optimization problem.

We conjecture and partially verify by computational
experiments that it could be more suitable to model
the PSP problem as a multi-objective optimization
problem (MOOP).

When an optimization problem involves more than
one objective function, the task of finding one (or more)
optimum solution, is known as multi-objective optim-
ization (Steuer 1986). The PSP problem naturally
involves multiple objectives. Different solutions, i.e. the
three-dimensional conformations, may involve a trade-
off (the conflicting scenario in the funnel landscape)
among different objectives. An optimum solution with
respect to one objective may not be optimum with
respect to another objective. Consequently, one cannot
choose a solution which is optimal with respect to only
one objective. In general, in problems with more than
one conflicting objective, there is no single optimum
solution. There exists, instead, a set of solutions which
are all optimal, called the optimal Pareto front.

Hence, for a MOOP we can define the following
procedure:

(i) find the optimal (or the observed) Pareto front
with a wide range of values for objectives; and

(ii) choose one of the solutions in the Pareto front,
using some higher-level information.

We would like to emphasize the fact that our major
goal in using the multi-objective approach to PSP is
to find the folded ensemble by means of the Pareto
optimality concept.

We think that finding the native structure of a given
protein is not equivalent ‘to finding a native state
needle in a conformational space haystack’ but, instead,
should be more like ‘finding a set of equivalent needles
in a haystack’. Obviously, the problem is still far from
being solved, but we are modelling the PSP problem in
an alternative and more accurate way; that is, at any
stage the molecule exists in an ensemble of confor-
mations. We want to model such a stage as an
approximated Pareto front.

Indeed, the authors of the paper (Ma et al. 1999)
report: ‘The long-held views on lock-and-key versus
induced fit in binding arose from the notion that a
protein exists in a single, most stable conformation,
dictated by its sequence. However, in solution proteins
exist in a range of conformations, which may be
described by statistical mechanical laws and their
populations follow statistical distributions. Upon bind-
ing, the equilibrium will shift in favour of the bound
conformation from the ensemble of conformations
around the bottom of the folding funnel.’

Hence, the ensemble of equivalent conformations is
crucial for proteins in solution, as well. Finally, it is
evident how the multi-objective approach intends to
discover the conformation populations around the
bottom of the folding funnel using the Pareto optim-
ality concept so as to study the biological activity in

J. R. Soc. Interface (2006)

this stage. Indeed, conformational diversity around the
bottom of the folding funnel may provide a simple yet
elegant solution to a range of binding processes. We
want to discover this conformational diversity around
the bottom of the funnel using the Pareto optimality.

Since tackling multi-objective problems in their
native form (i.e. rather than adding together objective
values or treating some of them as constraints) can be
actually beneficial, it should be more effective and
accurate to face a problem as a MOOP when the
objectives have a significant anti-correlation or conflict,
although this is probably not a sufficient condition
(Louis & Rawlins 1993; Knowles et al. 2001; Jensen
2003). In particular, Knowles et al. (2001) showed
experimentally how in some cases transforming a
single-objective problem into a multi-objective one
can reduce the number of local optima and facilitate the
optimization process. Moreover, they showed how this
process, called multi-objectivization, can facilitate the
search process for neighbourhood based algorithms, like
Pareto archived evolutionary strategy (PAES).

In a recent article (Day et al. 2002), Lamont and
co-authors reformulated the PSP problem as a MOOP
and used a multi-objective evolutionary algorithm (MO
fmGA) for the structure prediction of two small protein
sequences: [Met]-enkephelin (five residues), polyalanine
(14 residues). After this initial approach, this idea
was applied to medium size protein sequences
(46-70 residues) with promising results (see Cutello
et al. 2005).

In the following, we formally introduce the MOOP.

2.1. Multi-objective optimization problems
A MOOP can be formally defined as follows.

Definition 2.1. Find a vector " = [a], 15, ..., x;‘L]T which
(i) satisfies the p equality constraints,
hi(z) =0, i=1,2,...,p; (2.1)

(i) is subject to the m inequality constraints,

g()>0, i=1,2,....,m; (2.2)
(iii) and which optimizes the vector function,
f(@) = [h(@), L), ..., fi(@)]". (2.3)

Hence, we have the following two hyperspaces.

Definition 2.2. Fquations (2.1) and (2.2) define the
feasible region (or decision variable space)

Q={zeR": g(z) >0,
ht(m) = 07

1 =1,2,...,m;
i=1,2,...,p},

and any point x€ Q defines a feasible solution.

(2.4)

Definition 2.3. The wvector function f(x) maps the
elements of Q into a set A which represents all possible
values of the objective functions:

A= (fz)eR:zeQ). (2.5)
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The evaluation function of the MOOP f: Q — A,
maps decision variables &= (x|, o, ..., 7,) to vectors

y:(yla Yo, «vvy yk)'

Definition 2.4. A point £°€Q is Pareto optimal if for
every t€Q and I={1, 2, ..., k} either

Ve (fi(z) = fi(x")) (2.6)
or there is at least one 1€ I such that
fi(®) = fi(z"). (2.7)

Definition 2.5. A vector u=/(uy, ...
dominate v= vy, ..., v), denoted by

, Up) is said to

U< v,

if and only if u is partially less than v, i.e. for all i€
{1, .. kb wy<uyuATie{l,.. k}:uy<wv,.

If the vector u dominates the vector v, or math-
ematically u < v, we also say that v is dominated by u,
or u is non-dominated by v, or w is not inferior to v.

Definition 2.6. A point £*€Q is a weakly non-
dominated solution if there is mo xEQ such that

filz)<f(x"), fori=1, ..., k.

Definition 2.7. A point £'€Q is a strongly non-
dominated solution if there is no *x€Q such that fix)
<fi(x"), fori=1, ...,k and for at least one value of i,

f{m) <flx).

Thus, if £* is strongly non-dominated, it is also
weakly non-dominated, but the converse is not necess-
arily true.

Definition 2.8. For a given MOOP f(x), the Pareto
optimal set, P*, is defined as

Pr={zeQ: -3z €Q fz')<f(x)}. (2.8)

In this paper, a Pareto optimal set that truly meets
this definition is called a true Pareto optimal set, Py -
In contrast, a Pareto optimal set that is obtained by
means of an optimization method is referred to as an
observed Pareto optimal set, P;,,. In reality, an
observed Pareto optimal set is an estimate (or a
discrete representation) of a true Pareto optimal set.

Identifying a good estimate P, is the key factor for
the decision-maker’s selection of a compromise sol-
ution, which satisfies the objectives as much as possible.

We denote the observed Pareto optimal set at time-
step ¢ obtained using an optimization method by ’Pf)ifs
(or the current observed Pareto optimal set). Moreover,

we have

Phl = {=l, ...

obs

(2.9)

7m;p}a

where np=|P5'| is the total number of observed

Pareto solutions at time-step t.
Obviously, the major problem a decision-maker
needs to solve, is to find the best

TE P:bS'

Definition 2.9. For a given MOOP f(x) and Pareto
optimal set P*, the Pareto front, PF*, is defined as

PF  ={u=f=(fi(z),...i(x)|zeP}. (2.10)

J. R. Soc. Interface (2006)

As for the Pareto optimal set, we can define the
observed Pareto front at time-step ¢ by an optimization
method:

PESL = {ul, u), ..., ul}, (2.11)
where N=|PF5!| is the total number of observed
Pareto front solutions at time-step t.

The goal of our work is to estimate the observed
Pareto front, PF :];fs, by a multi-objective evolutionary
algorithm for the structure prediction of real proteins.
Identifying a good estimate of PF ;‘{)f; is crucial for the
biologist’s selection of a stable fold protein near native
conformation, under biological conditions, satisfying

the objectives as much as possible.

3. METHODS

The most difficult task when using a search procedure
for the PSP problem is to come up with good:

(i) representation of the conformations,
(ii) cost function for evaluating conformations, and
(iii) metrics to evaluate how similar to the native
structure are the predicted conformations.

We will now introduce the problems correlated with
those aspects and we will describe our choices.

3.1. Representation of the polypeptide chain

Few conformation-representations are commonly used:

(i) all-atom three-dimensional coordinates;
(ii) all-heavy-atom coordinates;
(iii) backbone atom coordinates+side-chain cen-
troids;
(iv) C, coordinates; and
(v) backbone and side-chain torsion angles.

Some algorithms use multiple representations and
move among them for different purposes.

In this work, we use an internal coordinates
representation (torsion angles), based on the fact that
each residue type requires a fixed number of torsion
angles to fix the three-dimensional coordinates of all
atoms. Bond lengths and angles are fixed at their ideal
values. All the w torsion angles are fixed at their ideal
value 180°. So, the degrees of freedom in this
representation are the backbone and side-chain torsion
angles (¢, ¥ and x;). The number of x angles depends on
the residue type (see table 1).

3.2. Potential energy function

In order to evaluate the structure of a molecule we need
to use some cost or energy functions. To come up with
some good functions it would be natural to use quantum
mechanics, but it is too computationally complex to be
practical in modelling larger systems, so, we use
classical physics. Sometimes called potential energy
functions or force fields, these functions return a value
for the energy based on the conformation of the molecule.
They provide information on what conformations of
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Table 1. Number of y, angles required to fix the positions of
side-chain atoms in each residue type.

residue number of x angles

GLY, ALA, PRO main chain
SER, CYS, THR, VAL X1

ILE, LEU, ASP, ASN, HIS, X1, X2

PHE, TYR, TRP
MET, GLU, GLN X15 X2, X3
LYvS7 ARG X15 X2y X35 X4

the molecule are better or worse. The lower the energy
value, then the better should be the conformation.
Most typical energy functions have the form

=> BR)+ > AR)+ > T(R)

bonds angles torsions

p>

non-bonded

(3.1)

where R is the vector representing the conformation of
the molecule, typically in Cartesian coordinates or in
torsion angles.

The literature on cost functions is enormous (Momany
et al. 1975; Hermans et al. 1984; Cornell et al. 1995). In
this work, in order to evaluate the conformation of a
protein, we use the Chemistry at HARvard Macro-
molecular Mechanics (CHARMM) (v.27) energy func-
tion. CHARMM is a popular all-atom force field used
mainly for studying macromolecules (MacKerell et al.
1998; Foloppe & MacKerell 2000). It is a composite sum
of several molecular mechanics equations grouped into
two major types: bonded (stretching, bending, torsion,
Urey-Bradley, impropers) and non-bonded (van-der-
Walls, electrostatics).

The CHARMM energy function has the form

Echarmm Z kb b bO +Z kUB S SO
bonds
B,
+ Z ]Cg (6—6,)* Z ky[1 + cos(nx —9)]
angles torsions
E,
+ Z Aimp d) ¢O)
impropers
Es
R min;\ ' R min; 6
- ey -]
non-bond Ti'j rij
Eg
+ 24 (3.2)
67"2’]‘
E;
where

(i) b is the bond length, by is the bond equilibrium
distance and k;, is the bond force constant;

(ii) Sis the distance between two atoms separated
by two covalent bonds (1, 3 distance), S is the
equilibrium distance and kyp is the Urey
Bradley force constant;

J. R. Soc. Interface (2006)

(iii) 6 is the valence angle, 6 is the equilibrium angle
and Kj is the valence angle force constant;

(iv) x is the dihedral or torsion angle, k, is the
dihedral force constant, n is the multiplicity and
0 is the phase angle;

(v) ¢ is the improper angle, ¢q is the equilibrium
improper angle and k,,, is the improper force
constant; and

(vi) e; is the Lennard Jones well depth, r;; is the
distance between atoms ¢ and j, R min; is the
minimum interaction radius, ¢; is the partlal
atomic charges and e is the dielectric constant.

Typically, ¢; and R min; are obtained for individual
atom types and then combined to yield ¢;; and R min;;
for the interacting atoms via combining rules. In
CHARMM, ¢;; values are obtained via the geometric

mean &; = ,/€;;, and R min; via the arithmetic mean,
R miny; (len + R min;)/2.

As a final note, we would like to underline the fact
that the CHARMM energy function simply adds
together bond and non-bond energies. As it will be
experimentally shown later on, this produces an energy
landscape which does not well correlate with the real
molecule folding process.

3.3. Distance matrixz error and root mean
square deviation metrics

To evaluate how similar the predicted conformation is
to the native one, we employ root mean square
deviation (RMSD) coupled with another frequently
used metric, the distance matrix error (DME). RMSD
is given by the formula

RMSD(a, b) =

where r,; and ,; are the positions of atom 7 of structure
a and structure b, respectively, and where structures a
and b have been optimally superimposed. Fitting was
performed using the McLachlan algorithm (McLachlan
1982).

DME is given by the formula

n n

Z Z (| Tai raj| _|Tbi_rbj|)2

i=1j=

DME(a, b) = (3.4)

n
This calculation does not require the superposition of
coordinates. RMSD, which measures the similarity of
atomic positions, is usually larger than DME, which
measures the similarity of inter-atomic distances.
RMSD is one of the most used instruments for
structure comparison. However, using RMSD alone has
some negative aspects: best alignment does not always
mean minimal RMSD; significance of RMSD depends
on the size of the structures; significance of RMSD
varies with protein type; it is not a good measure when
all equivalent parts of the proteins cannot be simul-
taneously superposed; all atoms are usually treated
equally, though, for example, residues on the surface
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have a higher degree of freedom than those in the core
(so weights might be used in the calculation).

4. THE MULTI-OBJECTIVE FORMULATION

In order to reduce the size of the conformational space,
backbone torsion angles are bounded in regions derived
from secondary and supersecondary structure predic-
tion (table 2).

Supersecondary structure is defined as the combi-
nation of two secondary structural elements with a
short connecting peptide between one to five residues in
length. A short connecting peptide can have a large
number of conformations. They play an important role
in defining protein structures. The conformations of the
residues in the short connecting peptides are classified
into five major types, namely, a, b, e, lor ¢ (Sun & Jang
1996) each represented by a region on the ¢— map. Sun
et al. (1997) developed an artificial neural network
method (ANN) to predict the 11 most frequently
occurring supersecondary structures: H-b-H, H-¢-H,
H-bb-H, H-lI-E, E-aa—E, E-ea—E, H-lIbb-H, H-lba-E,
E-aal-E, E-aaal-E and H-I-E, where H and E
represent o-helix and B-strand, respectively.

Side-chain torsion angles are constrained in regions
derived from the backbone-independent rotamer
library of Roland L. Dunbrack (Dunbrack & Cohen
1997). Side-chain constraint regions are of the form:
[m—o0, m+a]; where m and ¢ are the mean and the s.d.
for each side-chain torsion angle computed from the
rotamer library. Under these constraints, the confor-
mation is still highly flexible and the structure can take
on various shapes that are vastly different from the
native shape.

We can think of a protein as a collection of atoms
linked by a chemical bond. With the symbol a,<> a; we
represent a chemical bond between the two atoms a;
and a,. Using this notation we can divide all the atoms
into two categories: bond atoms and non-bond atoms,

Abond ={<a7ﬁa--'aa7ﬁ+k>|3ai<_>a’i+1}7 (4 1)
Vi=1..k 1<k<3, ’
Anon—bond = {<aia ceey aj>| ﬁaai(—) aj}, VZ;] (42)

The bond set Ap,nq represents the set of all atom
chains of max length four, in this way we consider only
bonds, angles and torsion interactions between atoms,
local interaction. The Anonpona Set represents all the
atoms not connected by chemical bond, which are
atoms separated by at least three or more covalent
bonds, non-local interaction. This division reflects the
decomposition of CHARMM in two partial sums:
bonded and non-bonded atom energies, following
definition (3.2),

5
fl = Ebond(Abondu Cbond) = Z Eka (43)
k=1

7
f2 = Enon—bond(Anon—bondv Cnon—bond) = Z Elm (44)
k=6

where SymbOIS Cbond and Cnombond are, TeSpeCtiVely,
the force constants involved for bond and non-bond
atoms in equation (3.2).

J. R. Soc. Interface (2006)

Table 2. Corresponding regions of the secondary and super-
secondary structure constraints.

supersecondary

structures ¢ 2

H (o-helix) [—75°, —55% [—50°, —307
E (B-strand) [—130°, —110°] [110°, 1307

a [—150°, —30 [—100°, 507
b [—230°, —30°] [100°, 200°]

e [30°, 130°] [130°, 260°]

! 30°, 1507 [—60°, 90%]

t [—160°,—507] [50°, 100°]
undefined [—180°, 07 [—180°, 180

The bond energy characterizes the interactions
between residues that are neighbours along the primary
sequence. The non-bond term represents the inter-
action between residues that are separated in the
primary sequence by at least two intervening residues
(one to four interactions).

These two functions represent our minimization
objectives, the torsion angles of the protein are the
decision variables of the multi-objective problem, and
the constraint regions are the variable bounds.

5. THE MULTI-OBJECTIVE EVOLUTIONARY
ALGORITHM

The algorithm PAES was proposed for the first time by
Knowles & Corne (1999). PAES is a multi-objective
optimizer which uses a simple (1+1) local search
evolution strategy. Nonetheless, it is capable of finding
diverse solutions in the Pareto optimal set because it
maintains an archive of non-dominated solutions which
it exploits to accurately estimate the quality of new
candidate solutions. At any iteration ¢, a candidate
solution ¢; and a mutated solution m, must be compared
for dominance. Acceptance is simple if one solution
dominates the other. If neither solution dominates the
other, the new candidate solution is compared with the
reference population of previously archived non-domi-
nated solutions. If the comparison fails to favour one
solution over the other, the chosen solution is the one
which resides in the least crowded region of the space.
A maximum size of the archive is always maintained.
The crowding procedure is based on recursively
dividing up the M-dimensional objective space in 27
equal-sized hypercubes, where d is a user defined depth
parameter. The algorithm continues until a given, fixed
number of iterations is reached.

I-PAESis amodified version of PAES with a different
solution representation (polypeptide chain) and
immune inspired operators: cloning and hypermutation
(Cutello & Nicosia 2004). The algorithm starts by
initializing a random conformation. The torsion angles
(¢, ¥, x;) are generated randomly from the constraint
regions. After that, the energy of the conformation
(a point in the landscape) is evaluated. First, the
protein structure in internal coordinates (torsion angles)
is transformed in Cartesian coordinates. Then the
CHARMM energy potential of the structure is
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I-PAES(depth, archive_size, objectives)

1.t :=0;
m 2. Initialize(c); /*Generate initial random solution*®/
u 3. Evaluate(c); /*Evaluation of initial solution*/
4. AddToArchive(c); /*Add ¢ to archive*/
G 5. while(not(Termination()))
* /*Start Immune phase*/
[ 6 (5%, ¢§'°) := Cloning(c); /*Clonal expansion phase*/
w 7. (¢hvP chvPy .= Hypermutation (¢!, ¢f©); /*Affinity maturation phase*/
8. Evaluate(cf¥?, ¢5%?); /*Evaluation phase*/
H 10. if(c!? dominates ¢i¥P) m := 'P;
: 10. else if(ch¥? dominates ¢™?) m := ci7;
] 10. else m := Bes‘c(c?yp7 cgyp); /*min E.pormm selection®/
HEN 12. AddToArchive(Worst(c!?, B¥P)); /*max Ecparmm selection*/
zl é: /*End Immune phase*/
8 % B g /*Start (141)-PAES*/
=2 E 10. if(¢c dominates m) discard m;
11. else if(m dominates c)
12. AddToArchive(m);
13. C 1= 1m;
14. else if(m is dominated by any member of the archive) discard m;
15. else test(c, m, archive_size, depth);

16. ti=t+1;
17. endwhile

computed using routines from TINKER Molecular
Modelling Package (http://dasher.wustl.edu/tinker/).

At this point, we have the main loop of the
algorithm. From the current solution, two clones will
be generated, producing the solutions (¢, ¢5°) which

AP P After evaluation, the

will be mutated into (

best clone (min Eiarmm) between c}fyp and cgyp is
selected as new mutated solution m, while the other
one, if possible, is added to the archive following the

standard method of PAES to update the archive. From

Interface

— -

‘Z‘ gi this moment on, the algorithm proceeds following the
=5 22 standard structure of PAES. Figure 1 shows the
©|Z2 pseudo-code of the algorithm.

Two kinds of mutation operators were used in the
affinity maturation phase (line 6 of I-.PAES). The first
clone is mutated using the first mutation operator and
the second clone using the second mutation operator.
The first mutation operator, M;, may change the
conformation dramatically. When this operator acts
on a peptide chain, all the values of the backbone and
side-chain torsion angles of a randomly chosen residue
are re-selected from their corresponding constrained
regions. The probability for the application of this
operator is regulated by the following law:

—2 X (ffe) }

1
Tmax (5 )

M, (ffe) = exp{

where T,,.. is the max number of evaluation allowed
and ffe is the number of fitness function evaluation
done. The probability of mutation decreases as the
search method proceeds. The second mutation oper-
ator, M,, performs a local search of the conformational
space. It will perturb some torsion angles (¢, ¥, x;) of a
randomly chosen residue with the law
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0" =6+ N(0,1), (5.2)
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Figure 1. Pseudo-code of I-PAES.

where 6 is the generic torsion angle, and N(0, 1) is a real
number generated by a Gaussian distribution of mean
u=0 and s.d. ¢ =1. The mutation rate used is similar to
the scheme presented in (Cui et al. 1998). The number
of mutations decreases as the search method proceeds
following the law

) =1 (L) {250,

where ffe and T,,.. are defined as before, L is the
number of residues and k is a constant set to 4.

(5.3)

5.1. Bond energy versus non-bond energy

Before we analyse the quality of the obtained results,
we would like to experimentally validate such a multi-
objective approach. It is based on the fact that local
interaction (bond energy) and non-local interaction
(non-bond energy) among atoms are in conflict. This is
the typical characteristic of a MOOP. The literature on
energy functions and about those two different inter-
actions is very vast. Most of the major energy functions
are based on the combined usage of bond and non-bond
energies. There is no formal proof, however, about the
conflict between them. We start by describing the
simple intuition about the conflict and then we show
how it is possible to verify it experimentally.

In the PF process, it was demonstrated experimen-
tally that the native structure of a protein is at its
global minimum of the thermodynamical potential
(free energy) of the protein (Anfinsen 1973). This is a
valid principle that governs the protein conformational
search. During the pathway to reach the native
structure, the protein is forced to decide what to do
next. It is quite clear that it is possible to make
movements that locally are able to decrease the bond
energy of the system. Globally, however, this could not
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Figure 2. Conflict landscape between bond and non-band
energies. Left y-axis range is for non-band energy, right y-axis
range is for bond energy.

be true. For example, the electrostatic interactions or
the short distance van der Waals interaction of atoms
near in the space but far in primary sequence could be
penalized although an improvement it is reach in bond,
angles or torsion energies. This simple intuition is
demonstrated experimentally by the plot in figure 2.
In this figure, we show the typical bond and non-bond
energy course during the iterations of the algorithm. It
is clear that the two functions are in conflict. If one
interaction decreases the other always increases but while
this process goes on, there are compensation effects that
will cause the minimization of the total energy.

5.2. Deciston-making phase

As described in §2, after a Pareto front is found, to solve
effectively a MOOP one has to choose a solution (or a
class of solutions) in the Pareto front using some
‘higher-level information’. Such a decision-making
phase, could be really difficult to accomplish, in
particular when the number of objectives and solutions
is large. Although, there is no universally accepted
method, in general the most interesting solutions of the
observed Pareto front are characterized by the fact that
a small improvement in one objective will cause a large
deterioration in at least one other objective. These
solutions are called knees (Branke et al. 2004; Handl &
Knowles 2005). In particular, in Branke et al. (2004),
the authors describe an algorithm for finding the knees
in the Pareto front: an angle-based method which uses
the four closest neighbours. More in details, given a
conformation point P, if we denote by A; and A, the
two closest points from the left, and by B, and B, the
two closest points from the right, we can form four
angles: A, PB,, A,PB,, A,PB, and A,PB,. The
greatest of these four angles is then assigned to P.
The knees of the Pareto front are the angles greater
than a given threshold.

Using such a simple idea, we can adopt the following
decision-making scheme:

(i) first, detect the solutions which lie in the knees of

the observed Pareto front, using the angle-based
method with four neighbours described above; and

J. R. Soc. Interface (2006)

(ii) select the solution with the lowest energy function
value from these samples.

As we will see later, such a simple method is able to
select solutions with a good trade-off between energy
and metrics values (DME and RMSD).

This is just one possible approach for the decision-
making phase. It is possible to use other type of higher-
level information to select solutions from the Pareto
front, using for instance structure stability, compact-
ness, hydrophobic score, etc.

6. RESULTS

In this section, we report the results obtained using the
multi-objective approach for PSP. We applied our
algorithm to a famous short peptide ([Met]-enkephalin)
and then to four proteins sequences from the Protein
Data Bank (PDB). Table 7 shows the results for each
protein. For 1ZDD, 1ROP, 1UTG and 1CRN proteins
we set the maximum number of iterations to 2.5X 10°;
while for Met-enkephalin peptide we ran the I-PAES for
3.5X10° energy functions evaluations.
[Met]-enkephalin. [Met]-enkephalin is a very short
polypeptide, with only five amino acids (TYR-GLY-
GLY-PHE-MET), 22 variable backbone and side-
chain torsion (or dihedral) angles and 75 atoms. From
an optimization point of view, the [Met]-enkephalin
polypeptide is a paradigmatic example of multiple-
minima problem. It is estimated to have more than 10"
locally optimal conformations. This peptide is an
obvious ‘test bed’, for which a substantial amount of
in silico experiments has been done (Li & Scheraga
1988). Figure 3 shows the dynamic of the Pareto fronts
at different time-steps of the algorithms. Figure 4a
instead shows the overlap between predicted and
the Scheraga conformations (a classical benchmarks);
while, figure 4b shows the overlap between predicted
conformation and the native structure of the
peptide 1PLW. After computing the Pareto front
using our algorithm, firstly we detect the class of
solutions in the knees of the observed Pareto front and
then select the solution with lowest energy value.
For the Met-enkephalin, the lowest energy value in the
knees corresponds to the lowest energy value of
the overall Pareto front, —20.56 kcal mol™'; this
conformation matches the Scheraga structure

with DMEall—atoms =2.211 j"% RMSDaH—atoms =2.83 1&7
DMEg, =0.454 A and RMSD =0.490 A, and the
crystal structure of 1PLW with DME. | atoms =

2.311 A, RMSD,atoms=3.605 A, DME =1.200 A

and RMSD, = 1.740 A.

Disulphide-stabilized mini protein A domain
(1ZDD). 1ZDD is a two-helix peptide of 34 residues
(Starovasnik et al. 1997). For this protein, the native
secondary structure information was determined using
the original PDB server, while the secondary structure
constraints were predicted by the SCRATCH predic-
tion server (Pollastri et al. 2002). By inspecting the
Pareto front of 1ZDD protein (figure 5), we can note
that there are no knees, hence we cannot use our
decision-making method. In this case, we simply select
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Figure 3. [Met]-enkephalin Pareto front dynamic (¢ is the
number of iterations).

(h)

Figure 4. (a) Overlap between predicted (black) and Scheraga
conformations for [Met]-enkephalin, DME, = 0.454 A,
RMSD¢, = 0.490 /OX; (b) and overlap between predicted
(black) and 1PLW conformations for [Met]-enkephalin,
DME, =1.200 A, RMSD,, = 1.740 A.

the conformation with lowest energy function value
—1052.09 kcal mol ~%; this conformation matches
the crystal structure with DME, =154 A and
RMSD, =2.27 A (see figure 6). Table 3 shows the
good relationship between the best energy structure
and the best RMSD conformation in the final archive.
Moreover, by inspecting the conformations in the final
archive, we can see that they all present good
characteristics both in terms of RMSD and energy.
For this protein, the algorithm is able to produce an
ensemble of good quality structures. Figure 7a shows
the C, RMSD per residue for the core region (3-32) of
predicted structure. One of the two a-helix is better
predicted than the other. In the plots, we also report
the protein sequence, the predicted secondary struc-
tures for each residue and the native one.

Figure 7b displays a good correlation between the
RMSD and the energy, suggesting that minimizing the
energy by varying the conformation will tend to drive
the conformation toward the true structure. Moreover,
by inspecting the plot, it is evident that the algorithm is
able to make a high sampling of the conformational
search space: in a range of 1/2 A there are more than
1000 conformations near the native state.

J. R. Soc. Interface (2006)
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Figure 5. 1ZDD Pareto front dynamic (¢ is the number of
iterations); the circle indicates the selected conformation.

(b)

predicted native

Figure 6. Predicted and native conformations for 1ZDD
protein (DMng =154 A, RMSD, =2.27 A).

Table 3. Pareto front inspection results for 1ZDD protein.
(The criteria used to select the best solution are given in bold.)

decision-making  energy . .
criteria (kcal mol ') RMSD (A) DME (A)
min energy —1052.09 2.27 1.54

min RMSD —1037.79 2.22 1.49

Repressor of primer (1ROP). Repressor of primer is
a four-helix bundle protein that is composed of two
identical monomers (Banner et al. 1987). Each mono-
mer has 56 residues and forms a-turn—o structure
(PDB id. 1ROP). For this protein the supersecondary
structure constraints were predicted by the ANN
method of Sun et al. (1997). The best computed
structure, based on the decision-making method
described in §5.2, matches the crystal structure
with DME. =1.62 A, RMSD,, =3.70 A and energy
—797.57 kcal mol ! (see figure 9). Table 4 shows the
comparisons between the structures in the final archive
based on different decision-making criteria.

In figure 8 we plot the observed Pareto front
reporting many empty regions along the curve. These
discontinuous regions show different clusters of non-
dominated compact solutions near the folded state.
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Figure 7. (a) C, RMSD per residue for the core region (3-32) of 1ZDD protein. (b) Plot of the energy versus RMSD relative to
1ZDD protein for a set of more than 1000 conformations generated by the algorithm.

Table 4. Pareto front inspection results for 1IROP protein.
(The criteria used to select the best solution are given in bold.)

decision-making energy

criteria (kcal mol ') RMSD (A) DME (A)
min energy —902.36 4.00 1.86
min energy in —T797.57 3.70 1.62
the knees
min RMSD —663.00 3.50 1.69
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Figure 8. Pareto front and energy versus RMSD for 1IROP
protein.

In the inset plot of figure 8 we show the correlation
between the energy and the RMSD for conformations
sampled by I-PAES algorithm. It is worth to note that
it is possible to produce structures with lower energy
than that of their native structures: a typical phenom-
enon observed in the search process of any method. In
particular, this appears to be the case for the repressor
of primer where the native structure energy (calculated
with CHARMM) has value equal to —667.0515 kcal
mol !, while the inset plot displays many native-like
structures with lower energy values.

Uteroglobin (1UTG). Uteroglobin is a 4-helix protein
that has 70 residues (Morize et al. 1987). The predicted

J. R. Soc. Interface (2006)

supersecondary structures are o—bb—o—lbb—a—bb-a.
Using these supersecondary structure constraints (pre-
dicted by the ANN method of Sun et al. 1997) the best
computed structure, using our decision-making method
described in §5.2, matches the native structure with
DME, =3.79 A RMSD, =4.60 A and energy
1128.3 keal mol ~ ' (see table 5). The observed Pareto
front of 1UTG obtained by the multi-objective
evolutionary algorithm is a sparse set of points (see
figure 11).

Crambin (1CRN). Crambin is a 46-residue protein
with two a-helix and a pair of B-strands (Williams &
Teeter 1984a,b). It has three disulphide bonds, whose
constraints we do not use. The supersecondary
structures, predicted by the ANN method of Sun
et al. (1997), are B-loop—a—1bb—a—-1-B-loop—a. The best
computed structure, using our decision-making
method described in §5.2, matches the crystal
structure with DMEg = 3. 72 A RMSD, =4.43 A
and energy 701.25 kcal mol ™~ (see table 6). Figure 12
shows the relation between the Pareto front of the
last iteration and the energy versus RMSD plot for
1CRN protein. Pareto front solutions are grouped into
three individual clusters of non-dominated compact
solutions. A wrong supersecondary structure predic-
tion was made in the crambin at the C-terminal of the
peptide chain: an incorrectly predicted a-helix (from
residue 41 to 45) was imposed on the peptide chain
as a constraint, this is evident from figure 13.
Although, the wrong structure was formed in this
terminal, the algorithm is able to reach a native like
structure.

We would like to underline the fact that the protein
conformation that has the minimum energy in the
knees, is often better than the one from the whole
obtained Pareto front (e.g. IROP, 1CRN and 1UTG
proteins). Thus, as we mentioned above, the energy
landscape produced by the CHARMM energy function
does not seem to fit well the real landscape. Finally, the
fact that solutions in the Pareto front that are not
minimum energy solutions are better (in terms of
RMSD and DME), clearly justifies a multi-objective
approach (tables 4-6).
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Figure 9. Predicted and native conformations for 1ROP
protein (DME., =1.62 A, RMSD, =3.70 A).
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Figure 10. Pareto front and energy versus RMSD for 1UTG
protein.

Table 5. Pareto front inspection results for 1TUTG protein.
(The criteria used to select the best solution are given in bold.)

decision-making energy

criteria (kcal mol ') RMSD (A) DME (A)
min energy 573.89 5.31 4.52
min energy in  1128.3 4.60 3.79
the knees
min RMSD 1170.85 4.27 3.47

6.1. Comparisons with other approaches

We compared our algorithm, I-PAES, and its results
to other works in literature (see table 8) and others
MOEAs, in particular NSGA2 (Deb et al. 2002), that
we implemented and tested on PSP. Two possible
versions of NSGA2 were implemented. The first one
uses standard low-level operators (SBX crossover and
polynomial mutation; Deb 2001), and the protein is
considered as a long sequence of torsion angles (real
numbers). The second one uses high-level operators
(naive crossover and the scheme of mutation used by
I-PAES). In this case, the protein is manipulated at
the amino acid level. The better performance of
the high-level version is very clear, although the
best RMSD found is always worse then that found
by I-PAES. The best RMSD found for 1CRN by

J. R. Soc. Interface (2006)

(a)

predicted native

Figure 11. Predicted and native conformations for 1UTG
protein (DME¢, = 3.79 A, RMSD, =4.60 A).

Table 6. Pareto front inspection results for 1TCRN protein.
(The criteria used to select the best solution are given in bold.)

decision-making energy

criteria (kcal mol ') RMSD (A) DME (A)
min energy 509.09 6.99 4.82
min energy in 701.25 4.43 3.72
the knees
min RMSD 752.42 4.375 3.77

Cooper et al. (2003), using a Hill-climbing genetic
algorithm, is 5.6 A. Again, our method performed
better in terms of best solution. Inspecting the
results reported in table 9, -)PAES outperform also
the good RMSD values obtained by the GA designed
by Dandekar & Argos (1996). Table 9 shows the
comparison between I-PAES, NSGA2, Hill-climbing
GA (Cooper et al. 2003) and Dandekar & Argos’ GA
(1996) on 1CRN.

7. CONCLUSION

As reported by Plotkin & Onuchic (2002) ‘the folded
state is a small ensemble of conformational structures
compared to the conformational entropy present in the
unfolded ensemble’. This sentence characterizes our
research goal of finding a set of equivalent three-
dimensional conformations inside the folded state. To
reach this goal we adopt a multi-objective approach
in order to obtain good observed Pareto fronts of
non-dominated compact solutions near or inside the
folded state. We propose a modified version of the
algorithm PAES that uses immune inspired principles
(clonal expansion and hypermutation operators) as a
new search method for PSP.!

The multi-objective approach is used to fold a
peptide, the Met-enkephalin, and medium size proteins,
and the results are comparable in terms of RMSD and
DME to other approaches in the literature.

In the last 50 years, the PF and the PSP problems
have been faced as a large single-objective optimization
problem. In this article, we conjecture by compu-
tational experiments that, instead, it could be more

IThe I-PAES source code is available from the authors.
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Figure 12. Comparison between the Pareto front (a) and energy versus RMSD values (b) for 1ICRN protein.

(a) (h)

Figure 13. (a) Predicted and (b) native conformations for
1CRN protein (DME¢, =3.72 A, RMSD, =4.43 A).

Table 7. Protein results.

energy
protein (keal - DMEg, RMSDg,
(PDBid) # mol ) (A) (A)
Met- 5 —20.56 0.454 0.490
Enke-
phelin
1Z2DD 34 —1037.831 1.54 2.27
1ROP 56 —661.481 1.62 3.70
1UTG 70 1128.3  4.60 3.79
1CRN 46 410.038 3.72 4.43

suitable to model the PSP problem as a MOOP.
Recently, the role of non-native and native interactions
has been deeply studied (McLeish 2005). Specific yet
non-native interactions may be important in stabilizing
the low-dimensional diffusive searches on the folding
pathways, as well as native interactions. The present
research work considers the bond and non-bond
interactions as main forces to direct the folding toward
the native state. This model is based on the fact that
local interaction (bond energy) and non-local
interaction (non-bond energy) between atoms are in
conflict.

J. R. Soc. Interface (2006)

Table 8. I-PAES versus other approaches for Met-enkephalin
peptide.

algorithm energy (kcalmol ') RMSD (A)
I-PAES —2047+£1.54 2.835
CHARMM

REGAL (real cod.) —23.55+1.69 3.23
Tight constr. CHARMM
(Kaiser et al. 1997)

Lamarkian (binary = —28.35+1.29 3.33
cod.) (Kaiser et al. =~ CHARMM
1997)

Baldwinian (binary — —22.57+1.62 3.96
cod.) (Kaiser et al. =~ CHARMM
1997)

REGAL (real cod.) —22.01£2.69 4.25
Loose constr. CHARMM
(Kaiser et al. 1997)

SGA (binary cod.) —22.58+1.57 4.51
(Kaiser et al. 1997)  CHARMM

REGAL (real cod.)  —24.92+2.99 4.57
(Kaiser et al. 1997)  CHARMM

Table 9. I-PAES versus other approaches for ICRN protein.

o

algorithm RMSD (A)

I-PAES 4.43

Dandekar & Argos’ GA (1996) 5.4

HC-GA (with hydrophobic term; 5.6
Cooper et al. 2003)

NSGA2 (with high-level operators) 6.447

HC-GA (no hydrophobic term; 6.8
Cooper et al. 2003)

NSGA2 (with low-level operators) 10.34

It is clear that, although it is possible to make
movements that locally are able to decrease the bond
energy of the protein conformation, globally, this could
be not true. Moreover, the electrostatic interactions or
the short distance van der Waals interaction of atoms
near in the space but far in the protein primary
sequence could be penalized although an improvement
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is obtained in bond, angles or torsion energies. If one
interaction decreases the other always increases but
while this process goes on, there are compensation
effects that will cause the minimization of the total
energy. Experimentally, it has been shown that the two
interaction types are in conflict following a typical
characteristic of the MOOPs.

The authors would like to express their gratitude to the
anonymous reviewers for their helpful comments. The
computations were carried out on the Applied Computer
Science Group Facility of the Ippari Research Center at the
Comiso Campus of the University of Catania.
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